NEW HETEROCYCLIC SYSTEM — PYRIDAZINO[3,4-c]CINNOLINE

Yu. M. Volovenko

1,5-Diaryl-6-hydroxy-3-methyl-4-pyridazinones are formed upon the diazotization of 6-amino-5-aryl-3-methyl-1-phenyl-4-pyridazinones (I) using sodium nitrite in acetic acid with subsequent treatment of the reaction mixture with water [1].

The introduction of electron-donor groups in the *meta* position of the 5-phenyl ring facilitates intramolecular azocoupling of the diazonium salt formed in the first step, which leads to closure of the cinnoline ring and formation of a new heterocyclic system, namely, pyridazino[3,4-c]cinnoline (II).

Of the two possible directions of electrophilic attack, only the attack leading to products IIa and IIb occurs. The finding of downfield singlets at 9.04 ppm for 10-H and 7.89 ppm for 7-H in the case of IIb and doublets at 9.11 ppm for 10-H $(J_{10}^8 = 2.5 \text{ Hz})$ and 8.51 ppm for 7-H $(J_7^8 = 9 \text{ Hz})$ in the case of IIa is unequivocal evidence supporting this conclusion.

2-Methyl-9-methoxy-4-phenyl-1(4H)-oxopyridazino[3,4-c]cinnoline (IIa) was obtained in 85% yield, mp 222°C (from DMF), R_f 0.66 (9:1 chloroform—methanol on Silufol UV-254). IR spectrum (KBr): 3100-3020 (=C-H), 2980-2920 (-CH₃), 1610-1590 cm⁻¹ (O=C=C-C=C-N=N-). PMR spectrum at 100 MHz in DMSO-d₆: 2.41 (3H, s, CH₃), 4.04 (3H, s, CH₃O), 7.3-7.8 (6H, m, Ph and 8-H), 8.51 (1H, d, $J_7^8 = 9$ Hz, 7-H), 9.11 ppm (1H, d, $J_{10}^8 = 2.5$ Hz, 10-H). Found: N, 17.6%. Calculated for $C_{18}H_{14}N_4O_2$: N, 17.6%.

2-Methyl-8,9-dimethoxy-4-phenyl-1(4H)-oxopyridazino[3,4-c]cinnoline (IIb) was obtained in 87% yield, mp 284°C (from DMF), R_f 0.59 (9:1 chloroform—methanol on Silufol UV-254). IR spectrum (KBr): 3120-3040 (=C-H), 2980-2920 (-CH₃), 1610-1595 cm⁻¹ (O=C=C-C=C-N=N-). PMR spectrum at 100 MHz in DMSO-d₆: 2.39 (3H, s, CH₃), 4.03 (6H, s, 2CH₃O), 7.55-7.75 (6H, m, Ph and 8-H), 7.89 (1H, s, 7-H), 9.04 ppm (1-H, s, 10-H). Found: N, 16.2%. Calculated for $C_{19}H_{16}N_4O_3$: N, 16.1%.

Taras Shevchenko Kiev University, 252601 Kiev, Ukraine. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 854-855, June, 1997. Original article submitted January 6, 1997.

This work was sponsored by Grant APU 063016 of the International Soros Program for the Support of Exact Sciences Education in Ukraine.

REFERENCES

1. F. S. Babichev, Yu. M. Volovenko, and L. M. Pereshivana, Ukr. Khim. Zh., 49, No. 11, 1197 (1983).